嘉宾:香港科技大学电子及计算机工程学系副教授黄文海
「我是黄文海,现时任职香港科技大学电子及计算机工程学系副教授,我的研究兴趣为半导体材料和微电子芯片技术方面,我现时专注第三代和第四代,即是新型半导体材料的基础和应用研究,这些技术主要会在高功率电子领域,或称为「电力电子领域」有很多应用的场景。」
电力电子技术的应用,会对世界有何影响? 其中一个例子是新能源方面。各地致力减少温室气体排放,越来越多国家尝试使用新能源取代化石能源,而改用电动车,亦即是新能源汽车是大势所趋,正因为这样,带来了半导体支持新能源汽车行业的需求。
「另一个例子就是储能产业。储能即是能源储备,是全球经济发展和经济复苏需要考虑的一个重要环节。就如太阳能,我们希望尽量利用天然资源,不要浪费,便需要一个硬件电力系统,负责储备大自然给予我们的天然资源。储能产业亦能够为新能源产业往后的发展,注入强劲的动力。据一些相关研究显示,以香港为例,如果可以充分利用香港建筑物天台安装太阳能板时,每年本地可生产最高约八亿八千万千瓦时(kilowatt-hour)的电能。在这个背景之下,香港虽然寸金尺土,但我们城市是试验太阳能储能产业的其中一个好地方。储能产业不单止在香港具有经济价值,亦有效优化香港土地资源里的电网配置,可以节省工商业的用电成本,亦可以解决能源过剩的问题,产生社会效益。
最后一个关于电力电子领域可以产生影响的地方,可能大家不会想到相关性,其实是与资讯科技有关。我们今日身处一个资讯流通的时代。物联网(IoT)和人工智能(AI)均牵涉到许多数据流通和交换。背后资讯及资料的储存、处理都需要数据中心协助。数据中心是什么?就是处理公司、个人或政府所需要的记录或运算的资料。数据中心由许多电脑伺服器、储存设备及一些网络设备组成。它们电力供应当然需要稳定,由于数据量高并且流通量多,耗电量大,我们都关心它们电源使用的效率。所以数据中心的电力供应和管理方案,以及它们之间如何互相整合,亦都变得日益重要。」
由于现今世界追求高能源效益和减低碳排放,对于新式微电子技术的技术要求变得更加严格。 而新一代电力电子技术有助发展高效能的储能系统、新型电动车技术和数据中心内的高效能电力系统。
「我们其中一个研究方向,就是开发出一些适用于电力电子系统的功率变换要求的新型半导体技术。刚刚我提及的第三代、第四代半导体,即新一代的半导体,亦称为「宽禁带半导体」。我们的研究正大力推动这些新的半导体技术,推动建构新型电力系统,加快推动新型电力系统的高品质、规模化发展。电力电子技术作为这些功率转换系统当中的核心,其实一直以来都是由低成本和可靠的传统半导体技术「硅」(Silicon)所主导。但为了适应新产业对于更高的功率密度,和更高的能源转换效益要求,「硅」其实有少许力有不逮。所以现今我们都想开发许多新型半导体,当中包括「碳化硅」(Silicon Carbide)和「氮化镓」(Gallium Nitride),这两个材料为主的宽禁带半导体。过去几十年,工业界和学校付出了很多努力,抢占了一些比较高端的市场。两者是第三代半导体所制造的微电子芯片,它们的优势就是具有比「硅」(Silicon)更高的耐压能力,以及更低的功率损耗,已经成为许多高效功率转换器内一个重要的部分。Tesla在最近一年内,便公布推出了以「碳化硅」成为它们电动车内一个很重要的半导体技术。
除了这两种材料之外,近年我们亦注意到一种所谓「超宽禁带半导体」,作为继第三代半导体后一种更加新型的半导体材料,就是所谓的第四代半导体。它们具有更加优异的潜力,亦都迅速崛起成为下一代电力电子技术的一个研究热点。相比起第三代的「碳化硅」和「氮化镓」,第四代半导体的材料包括「氧化镓」,一种氧化物,以及我们可能不觉得它会是半导体的金刚石,亦即是钻石,女士手上的首饰,其实都可以是一种半导体材料。它们不单止具备新能源技术所需要的高压、低损耗性能,而且都可以有机会满足到新产业规模化应用所需要的低成本需求。」